2011年4月14日星期四

Test Methods Provide Dissimilar Readings

During the last 20 years, three basic battery rapid test methods have emerged: DC load, AC conductance and multi-frequency electro-chemical impedance spectroscopy (EIS). All methods are resistance based, a characteristic that reveals the battery's ability to deliver load current. Internal resistance provides useful information in detecting problems and indicating when a battery should be replaced. However, the battery often drops below the critical 80% level set by IEEE before the condition can effectively be detected. Neither does resistance alone provide a linear correlation to the battery's capacity. Rather, the increase of cell resistance relates to aging.

When measuring the internal resistance of brand new VRLA cells from the same batch, variations of 8% between cells are common. Manufacturing process and materials used contribute to the discrepancies. Rather than relying on an absolute resistance reading, service technicians are asked to take a snapshot of the cell resistances when the laptop battery is installed and then measure the subtle changes as the cells age. A 25% increase in resistance over the baseline indicates a performance drop from 100% to about 80%. Battery manufacturers honor warranty replacements if the internal resistance increases by 50%.

Before analyzing the different test methods, let's briefly brush up on internal resistance and impedance, terms that are often used incorrectly when addressing the conductivity of a battery.

Resistance is purely resistive and has no reactance. There is no trailing phase shift because the voltage and current are in unison. A heating element is such a pure resistive load. It works equally well with direct current (DC) and alternating current (AC).
Most electrical loads, including the inspiron e1405 battery, contain a component of reactance. The reactive part of the load varies with frequency. For example, the capacitive reactance of a capacitor decreases with rising frequency. A capacitor is an insulator to DC and no current can pass through. The inductor, on the other hand, acts in the opposite way and its reactance increases with rising frequency. DC presents an electrical short. A battery combines ohmic resistance, as well as capacitive and inductive reactance. The term impedance represents all three types.

The battery may be viewed as a set of electrical elements. Figure 1 illustrates Randles' basic lead-acid battery model in terms of resistors and a capacitor (R1, R2 and C). The inductive reactance is commonly omitted because it plays a negligible role in a battery at low frequency.


Figure 1: Randles model of a lead acid battery.
The overall inspiron 1545 battery resistance consists of pure ohmic resistance, as well as inductive and capacitive reactance. The values of these components are different for every battery tested.

Battery rapid test methods and how they work
Let's now look at the different battery test methods and evaluate their strengths and limitations. It is important to know that each method provides a different internal resistance reading when measured on the same inspiron 640m battery. Neither reading is right or wrong. For example, a cell may read higher resistance readings with the DC load method than with a 1000-hertz AC signal. This simply implies that the battery performs better on an AC than DC load. Manufacturers accept all variations as long as the readings are taken with the same type of instrument.

DC load method: The pure ohmic measurement is one of the oldest and most reliable test methods. The instrument applies a load lasting a few seconds. The load current ranges from 25-70 amperes, depending on battery size. The drop in voltage divided by the current provides the resistance value. The readings are very accurate and repeatable. Manufacturers claim resistance readings in the 10 micro-ohm range. During the test, the unit heats up and some cooling will be needed between measurements on continuous use.


Figure 2:DC load method.
The true integrity of the Randles model cannot be seen. R1 and R2 appear as one ohmic value.

AC conductance method: Instead of a DC load, the instrument injects an AC signal into the inspiron e1505 battery. A frequency of between 80-100 hertz is chosen to minimize the reactance. At this frequency, the inductive and capacitive reactance converges, resulting in a minimal voltage lag. Manufacturers of AC conductance equipment claim battery resistance readings to the 50 micro-ohm range. AC conductance gained momentum in 1992; the instruments are small and do not heat up during use.

Figure 3: AC conductance method.
The individual components of the Randles model cannot be distinguished and appear as a blur.

Multi-frequency electro-chemical impedance spectroscopy (EIS): Cadex Electronics has developed a rapid-test method based on EIS. Called Spectro, the instrument injects 24 excitation frequencies ranging from 20-2000 Hertz. The sinusoidal signals are regulated at 10mV/cell to remain within the thermal battery voltage of lead acid. This allows consistent readings for small and large batteries.

Figure 4: Spectro method.
R1, R2 and C can be measured separately, enabling the estimation of battery conductivity and capacity

Spectro is the most complex of the three methods. The 20-second test processes 40 million transactions. The instrument is capable of reading to a very low micro-ohms level. With stored matrices as reference, Spectro is capable of providing gk479 , fk890 battery capacity in Ah, conductivity (CCA) and state-of-charge.

The EIS concept is not new. In the past, EIS systems were hooked up to dedicated computers and diverse laboratory equipment. Trained electrochemists were required to interpret the data. Advancements in data analysis automated this process and high-speed signal processors shrunk the technology into a handheld device.

Capacity measurements
DC load and AC conductance have one major limitation in that these methods cannot measure capacity. With the growing demand of auxiliary power on cars and trucks and the need to assess performance of stationary batteries non-invasively, testers are needed that can estimate battery capacity. Cadex has succeeded in doing this with car batteries. The company is working on applying this technology to stationary batteries.

Figure 5 reveals the reserve capacity (RC) readings of 24 car batteries, arranged from low to high on the horizontal axis. The batteries were first tested according to the SAE J537 standard, which includes a full charge, a rest period and a 25A discharge to 1.75V/cell during which the reserve capacity was measured (black diamonds). The tests were then repeated with Spectro (purple squares) using battery-specific matrices. The derived results approach laboratory standards.


Some people claim a close relationship between battery conductivity (ohmic values) and capacity. Others say that internal ohmic readings are of little practical use and have no relation to capacity. To demonstrate the relationship between resistance and capacity, Cadex Electronics has carried out an extensive test involving 175 automotive batteries in which the cold cranking amps (CCA) were compared with the RC readings. CCA represents the conductivity of the battery and is closely related with the internal resistance.

Figure 6 shows the test results. The CCA readings are plotted on the vertical Y-axis and the RC on the horizontal X-axis. For ease of reading, the batteries are plotted as a percentage of their nominal value and are arranged from low-to-high on the X-axis.

Figure 6: CCA as a function of reserve capacity (RC).
Internal resistance (represented by CCA) and capacity do not follow the red line closely and fail to provide accurate capacity readings.

没有评论:

发表评论